

1 June 2023

Reference: 220509.03FA

Precinct Capital Pty Ltd Level 1, 2 Barrack Street Sydney NSW 2000 Attention: Dylan Baudinet

SUPPLEMENTARY TRAFFIC AND PARKING ADVICE FOR THE APPROVED BUSINESS PARK AT OLD CASTLEREAGH ROAD AND LUGARD STREET, PENRITH

Dear Dylan,

Reference is made to your request to provide supplementary traffic and parking advice for the Approved Business Park at Old Castlereagh Road and Lugard Street, Penrith. The supplementary advice provided in this letter is in response to the comments provided by TfNSW and DPIE in letters dated 20 March 2023 and 18 April 2023 respectively. Each of the comments has been reproduced, italicised, and responded to in the following Sections.

1 <u>TfNSW Comments</u>

1.1 SIDRA Scope and Calibration / Validation

TfNSW notes that whilst SIDRA outputs are provided, electronic SIDRA files have not been provided to TfNSW for review to validate the findings of the traffic report. From the SIDRA outputs the following is noted:

- that the intersection has been modelled as an isolated site rather than a networked site and therefore consideration has not been given to upstream or downstream conditions.
- *it is unclear if the traffic signal timings used in the model have been validated with SCATS data.*
- If the model has been calibrated.

The items above would be factors that could greatly influence the results of the model.

The modelling has been re-done using an updated data set from May 2023 to provide a networked model including three intersections, being:

- Castlereagh Road / Andrews Road;
- Castlereagh Road / Lugard Street;
- Castlereagh Road / Jack Williams Drive.

The revised model has been calibrated using:

- Cycle and phase times based on survey video footage;
- Light vehicle, heavy vehicle and pedestrian volumes;
- Observed blockages and arrivals during green.

Validation of the model outputs was completed using queue lengths observations. The base model queue outputs and the observed back of queue (at start of green) have been compared as shown in **Table 1** and indicate that the model is providing a reasonable reflection of the performance of the intersection.

Approach		North Approa	ch	South A	pproach	West Ap	proach
Lane	1	2	3	1	2	1	2
			AM Peak				
Observed Queue (veh)	2	1.71	1.18	4	5	0.45	1.57
Model Queue(veh, start of green)	3.4	3.4	0.7	3.6	3.8	0.6	1.3
Difference (veh)	1.4	1.69	-0.48	-0.4	-1.2	0.15	-0.27
			PM Peak				
Observed Queue (veh)	15	15	2	3	2	1.833333	4.25
Model Queue(veh, start of green)	13.5 12.8		0.6	4.4	4.4	1.7	3.4
Difference (veh)	-1.5	-2.2	-1.4	1.4	2.4	-0.13	-0.85

TABLE 1: QUEUE LENGTH OUTPUTS VS OBSERVED

1.2 Traffic Distribution

The trip generation in the traffic report is provided as:

As shown above, in accordance with the GHD Report assumptions, the proposed development is estimated to generate 1877 trips in the AM peak period (1608 in, 269 out) and 1755 trips in the PM peak period (236 in, 1519 out).

The traffic distribution used in the traffic report is based on the two network access points to the site:

Peak	Direction	North A Castler	eagh Rd	South A Castler	pproach eagh Rd	West A Luga	pproach ard St
Time	Direction	Right Turn	Through	Through	Left Turn	Right Turn	Left Turn
	IN	15%		5%	25%		
Alvi	OUT		<mark>5%</mark>			15%	25%
DM	IN	15%		5%	25%		
PM	OUT	OUT				15%	25%

TABLE 4: TRAFFIC DISTRIBUTION

Based on this distribution, 1608 inbound trips generated in the AM peak of which 30% or 482 vehicle trips use Castlereagh Road northbound to access the site of which 402 vehicles turn left into Lugard Street. The SIDRA model results for the 2036 Background Only + Full Yield AM models indicates that the model has been inputted with 124 vehicles turning left which is substantially lower than the 30% of development traffic i.e., 402 vehicles. It is not clear why the LT volume decreases from 134 LT vehicles in the 2026 model to 124 in the 2036 model. In this regard there seems to be a major error in the models which has affected the results and therefore the conclusions made.

The revised modelling has been undertaken using the traffic distribution presented in **Table 2** at the Lugard Street intersection.

Peak Hour	Direction	North Ap Castlerea	proach agh Rd	South A Castler	opproach eagh Rd	West Approach Lugard St			
		Right Turn	Through	Through	Left Turn	Right Turn	Left Turn		
A 54	IN	5%		0%	30%				
AW	OUT		0%			30%	5%		
DM	IN	5%		0%	30%				
PM	OUT		0%			30%	5%		

TABLE 2: TRAFFIC DISTRIBUTION

The modified distribution, in particular the increased right turn movement out of Lugard Street, is a result of the existing poor performance of the road corridor. It is unlikely that drivers heading south would use the other exit point onto Old Castlereagh Road and tolerate the extra delays for southbound traffic travelling on Castlereagh Road between Andrews Road and Lugard Street rather than using the shorter and faster route via the Lugard Street intersection.

For the purposes of sensitivity testing and considering that there remains some disagreement regarding the traffic generation of the site, two sets of traffic generation assumptions have been tested being:

- The trip generation outlined in **Figure 1**.
- A trip generation based on 0.35 trips per 100m² as per the supplementary traffic report completed by TTPA dated 29 October 2021.

Precinct ID	Indicative Land Use	AM pea Trip Ge	ak hour eneratio	period on	PM p Trip (eak hour Generatio	r period on	Week	end Pea d Trip G	ak hour eneration
		In	Out	Total	In	Out	Total	In	Out	Total
Employment	Industrial	749	187	936	202	807	1,008	0	0	0
Land	Office	1,080	120	1,200	90	810	900	0	0	0
	Total	1,829	307	2,136	292	1,617	1,908	0	0	0

FIGURE 1: TRAFFIC GENERATION ADOPTED AS REQUESTED BY DPIE

Further detail regarding the traffic generation and distribution across the three intersections is provide in **Annexure A** for reference.

1.3 Intersection Performance Results

Table 5 and 6 of the traffic report provide summaries of the modelling related to the with and without left turn lane. The tables are based on the average intersection delays for Lugard Street and not the Castlereagh Road approach which is of concern to TfNSW. The table is misleading in that it as does not clearly indicate the change in left turn movement values such as changes in queue lengths and changes in delays to all movements and requires the reader to go to the SIDRA outputs to find this information. Furthermore Table 6 relates to traffic in Lugard Street approach which has no relevance to the removal of the left turn lane in Castlereagh Road.

Results of the revised model are presented in **Table 3**, with detailed results for the left turn movement provided in **Table 4**. Detailed SIDRA outputs are provided in **Annexure B**.

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/vehicle)	Level of Service ⁽³⁾	Control Type	Worst Movement	95th Percentile Queue
		PER	FORMANCE - GHD	Volumes – No	b Left Turn La	ane	
Castlereagh Road /	AM	1.20	18	В	Signala	RT from Castlereagh Road (N)	20.5 veh (155m) Castlereagh Road (N)
Lugard Street	РМ	3.10	301.1	F	Signais	RT from Lugard Street (W)	171.8 veh (1309.8m) Lugard Street (W)
		PERI	FORMANCE - GHD	Volumes – wit	h Left Turn L	ane	
Castlereagh Road /	AM	1.33	24.6	В	Signala	RT from Castlereagh Road (N)	23.7 veh (179.5m) Castlereagh Road (N)
Lugard Street	PM	3.14	305.8	F	Signais	RT from Lugard Street (W)	172.6 veh (1315.9m) Lugard Street (W)
		PER	FORMANCE - TTPA	Volumes – N	o Left Turn L	ane	
Castlereagh Road /	АМ	0.76	6.6	A	Signals	RT from Lugard Street (W)	11.2 veh (86m) Castlereagh Road (S)
Lugard Street	РМ	1.22	56.4	D	Signais	RT from Lugard Street (W)	77.5 veh (559.5m) Castlereagh Road (N)
		PERF	ORMANCE - TTPA	Volumes – wi	th Left Turn L	ane	
Castlereagh Road /	AM	0.76	6.5	Α	Signals	RT from Lugard Street (W)	10.4 veh (78m) Castlereagh Road (N)
Lugard Street	PM	1.23	56	D	Signais	RT from Lugard Street (W)	76.7 veh (554m) Castlereagh Road (N)

TABLE 3: INTERSECTION PERFORMANCE - OVERALL

TABLE 4: INTERSECTION PERFORMANCE - LEFT TURN FROM SOUTH ONLY

		AM			РМ	
Case	Left Turn Demand (veh)	Left Turn Delay (s)	Left Turn Queue (m) ⁽¹⁾	Left Turn Demand (veh)	Left Turn Delay (s)	Left Turn Queue (m) ⁽¹⁾
GHD Volumes – No LT Lane	607	6.4	84.6	110	6.1	136.1
GHD Volumes – LT Lane	607	6.2	22.4	110	8.1	8.6
TTPA Volumes – No LT Lane	191	6.2	76.8	94	6.1	130.8
TTPA Volumes – LT Lane	191	6.1	5.1	94	8.1	7.3

Notes:

(1) Where no left turn lane is provided, the queue expressed is for the kerbside lane which serves both left turn and through movements.

The results indicate that the addition of a dedicated left turn lane provides no performance improvements for either the left turn or the overall performance of the intersection.

1.4 Traffic Efficiency

Sidra results aside, from a traffic efficiency perspective TfNSW disagrees that with the McClaren conclusion that there would be no network benefits with the left turn lane that the developer has been conditioned to provide as:

- The current traffic signal operation allows the left turn into Lugard Street to operate during two phases of the traffic signal cycle and therefore the additional left turn lane would allow for these vehicles to enter Lugard Street in approximately 80% of the total cycle time whereas in the current arrangement all it would take is for a vehicle in the kerbside lane travelling northbound to prevent this movement from occurring.
- The left turn lane allows for the storage of left turning vehicles when pedestrians cross Lugard Street in A phase and therefore still allow for two through lanes northbound in Castlereagh Road to be maintained without impediment.

MTE notes the potential benefits as noted above, however, the outputs of the model indicate that these benefits are minimal, if present at all for this intersection.

Considering the impact on the intersection wholistically, the additional left turn lane would result in an additional lane opposing the filter right turn from the northern approach, which would:

- a) Increase the critical and follow-up gap for these right turn movements;
- b) Reduce the number of gaps available for right turn movements;
- c) Increase delays for the right turn movement;
- d) Increase the likelihood of crashes at the intersection associated with right turning traffic from the north.

There is no clear and obvious benefit that would result from the addition of the left turn lane. Conversely, there are disbenefits as outlined above in addition to the disruption of traffic flows along Castlereagh Road that would occur during construction.

Further, it is understood that the Castlereagh Road corridor is to be upgraded in the future and these future upgrade works would make redundant the works being discussed. It is unlikely to be in the public interest to undertake two sets of road works at the intersection, particularly when there is no clear and obvious benefit to either safety or efficiency that would result from the left turn lane.

2 DPIE Comments

2.1 Traffic Generation Rates

- The GHD report titled 'Penrith Lakes Traffic and Transport Investigation traffic modelling report' dated 29 July 2021 (GHD report) has been relied on for input in the McLaren Traffic Engineering traffic advice. To allow for review of the figures used, including to verify that figures are correct and have been used in appropriate context, identify where in the GHD report (for example Figure X or Section X.X) the figures are from.
- Data used in Section 1.1 Traffic Generation is identified as being based on the GHD report however, it appears that the below points have been incorrectly identified. Clarify whether the conclusions of the McLaren Traffic Engineering traffic advice need to be updated when considering the correct data.
 - Dot Point 2 of Section 1.1 references that of the total GFA permitted for the site 80% will be used for industrial use and 20% for office use. However, the GHD report identifies that 80% of the land area (not the permitted GFA) will be used for industrial uses and the remaining 20% for office use.
 - Dot Point 3 of Section 1.1 should be updated to refer that 180,000m2 of GFA will be industrial uses and 75,000m2 of GFA will be office uses noting the typographical error in the GHD report.
- Using the land use percentage spilt and GFA spilt recommended in the GHD report, the traffic generation results of the Table below should be used to determine the impacts of the proposed modification:

Precinct ID	Indicative Land Use	AM pea Trip Ge	ak hou eneratio	r period on	PM p Trip (eak hou Generatio	r period on	Week	end Pea d Trip G	ak hour eneration	Zoning / Use Status	Assumptions and Source
		In	Out	Total	In	Out	Total	In	Out	Total	Zoned	GFA is 55% of total land area, based on an economic
Employment	Industrial	749	187	936	202	807	1,008	0	0	0	Likely	detailing the likely development of the site
Land	Office	1,080	120	1,200	90	810	900	0	0	0	use	80% of the Area is industrial uses and 20% of the
	Total	1,829	307	2,136	292	1,617	1,908	0	0	0		GFA were provided by DPIE: 75,000m2 for office and 180,000 for industrial
												Business parks and industrial estates peak hour trip generation rates for AM (0.52) and PM (0.56) from Page 2 in RMS TDT2013/04a
												Office blocks peak hour trip generation rates for AM (1.6) and PM (1.2) from Page 2 in RMS TDT2013/04a
												Assume no weekend trips due to land use type
												Important note: previously DPE advised a 70% and 30% split of industrial and office. In the current revision supplied to GHD it was updated to 80% and 20%, hence updating total trips.

The modelling has been revised to adopt the rates presented in the above table in one of the two cases tested. The detailed results of this modelling are presented in **Table 3** and **Table 4**.

2.2 Traffic Distribution

• Explanation is needed as why north and south approach through movements were assumed to carry traffic generated from in the site in Table 4 of Section 1.2 Traffic Distribution.

Initially it was assumed that some traffic seeking to enter the site from the south would use the alternative entrance from Old Castlereagh Road. The revised modelling routes all traffic approaching from the south along Lugard Street.

2.3 Detailed Results

• Provide a detailed results table for the northbound left turn, including traffic volumes, traffic delay and queue lengths

The detailed results of this modelling are presented in **Table 3** and **Table 4**.

2.4 SIDRA File

• Provide a copy of the SIDRA files to enable verification of intersection performance results.

A copy of the SIDRA file has been provided in conjunction with this advice.

3 Conclusions and Recommendations

In view of the discussion and results presented above, the following findings are relevant to note:

- 1. To provide a sensitivity analysis, the traffic generation used in the analysis ranged from approximately 690 trips to approximately 2,000 trips. The results indicate that the traffic generation of the site is not critical when considering the need for a left-turn slip lane at the intersection.
- 2. The results of the modelling indicate that there are no benefits to the performance of either the left-turn movement or the intersection generally to be gained from the construction of the left turn slip lane. The modelling indicates that the delays and queues at the intersection were either the same or worse with the addition of the slip lane.
- 3. The addition of the left turn slip lane will impact the performance and safety of the right turning movement from Castlereagh Street onto Lugard Street, which represents an unambiguous disbenefit to the works being undertaken.

In view of the foregoing, it is recommended that condition C23 of the Determination of Development Application by Grant of Consent for DA 9876 requiring the construction of a left turn deceleration lane from Castlereagh Road to Lugard Street be removed.

Please contact the undersigned on 9521 7199 should you require further information or assistance.

Yours faithfully, M^cLaren Traffic Engineering

Tom Steal Senior Traffic Engineer B.E (Civil) MIEAust Accredited Level 2 Road Safety Auditor

ANNEXURE A: TRAFFIC GENERATION AND DISTRIBUTION (2 SHEETS)

Full Yield North Approach Castlereagh RcSouth Approach Castlereagh Rc West Approach Lugard St. Peak Image: Am Peak IN S% NB L U R L total Joint OUT S% 0% 30% Image: Amopping Content of the system S%					
Image: Second approximation approximati approximate approximation approximation approximation approximati					
AM Peak IN 5% 0% 30% 1 1 Dist OUT 0% 0% 30% 5% 1 PM Peak IN 5% 0% 30% 5% 1 OUT 0% 0% 30% 5% 1 1 OUT 0% 0% 30% 1 1 1 Cars PM Peak IN 0 20 0 0 0 0 0 Cars PM Peak IN 0 9 0 0 0 0 0 0					
Dist OUT 0% 0 30% 5% PM Peak IN 5% 0% 30% 5% OUT 0% 0% 30% 5% AM Peak IN 0 20 0 0 121 0 0 0 AM Peak UT 0 0 0 0 0 0 0 0 Cars PM Peak UN 0 9 0 0 0 0 0 0 0 0 0					
Dist PM Peak IN 5% 0% 30% OUT 0% 0% 30% 5% AM Peak IN 0 20 0 0 121 0 0 0 Cars PM Peak IN 0 9 0 0 0 55 0					
OUT 0% 30% 5% AM Peak IN 0 20 0 0 121 0 0 0 AM Peak OUT 0 0 0 0 0 0 0 0 Cars PM Peak IN 0 9 0					
AM Peak IN 0 20 0 0 121 0 0 0 0 Cars AM Peak OUT 0					
Cars AM Peak OUT 0 0 0 0 0 0 0 51 9 0					
PM Peak OUT O O O O O O I22 20 O					
AM Peak IN 0 2 0 0 14 0 0 0 0					
Trucks AM Peak OUT 0 0 0 0 0 0 0 19 3 0					
PM Peak IN 0 3 0 0 20 0 0 0 0					
PM Peak OUT 0 0 0 0 0 14 2 0					
Full Yield					
North Approach Castlereagh Rc South Approach Castlereagh Rc West Approach Jack Williams Peak					
U R SB U NB L U R L total					
AM Peak IN 0% 30% 0%					
Dist OUT 30% 0% 0%					
PM Peak IN 0% 30% 0%					
OUT 30% 0%					
AM Peak IN 0 0 0 0 121 0 0 0 0 0					
Cars AM Peak OUT 0 0 51 0 0 0 0 0 0 0 0 0					
PM Peak IN 0 0 0 0 52 0 0 0 0 0 0					
AM Peak IN 0 0 0 0 14 0 0 0 0 0 0					
Trucks AM Peak 001 0 0 19 0 0 0 0 0 0 0 0 0					
North Approach Castlereagh Rd East Approach Andrews Rd South Approach Castlereagh Rd We	t Approach	West Approach	Old Castle	reach Rd	
	R	U R	EB	L	
AM Peak IN 25% 5% 0% 0% 40%					
Dict OUT 0% 5%			40%	25%	
Dist PM Peak IN 25% 5% 0% 40% <th <="" td=""><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td>				
OUT 0% 5%			40%	25%	
AM Peak IN 0 101 20 0 0 161 0	0	0 0	0	0	
Care AM Peak OUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0	69	43	
Cons PM Peak IN 0 44 9 0 0 70 <	0	0 0	0	0	
PM Peak OUT 0	0	0 0	163	102	
AM Peak IN 0 11 2 0 0 18 0	0	0 0	0	0	
Trucks AM Peak OUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 0	25	16	
PM Peak IN 0 17 3 0 0 0 27 0	0	0 0	0	0	
PM Peak OUT 0	0	0 0	19	12	

								D	PIE Numbe	ers								
	Full Yield North Approach Castlereagh RdSouth Approach Castlereagh Rd West Approach Lugard St Peak U R SB U NB L U R total																	
				roach Cast	lereagn Ro	South App		liereagn Ro	WestA		lgard St	Peak total						
	AM Peak	IN	0	5%	30	0	0%	30%	0		L	totai						
	AWITCOR	OUT		570	0%		070	3070		30%	5%							
Dist	PM Peak	IN		5%			0%	30%										
		OUT			0%					30%	5%							
	AM Peak	IN	0	82	0	0	0	493	0	0	0	0	1					
C	AM Peak	OUT	0	0	0	0	0	0	0	67	11	0	1					
Cars	PM Peak	IN	0	11	0	0	0	64	0	0	0	0	1					
	PM Peak	OUT	0	0	0	0	0	0	0	435	73	0	1					
	AM Peak	IN	0	9	0	0	0	56	0	0	0	0	1					
Trucks	AM Peak	OUT	0	0	0	0	0	0	0	25	4	0	1					
TTUCKS	PM Peak	IN	0	4	0	0	0	24	0	0	0	0						
	PM Peak	OUT	0	0	0	0	0	0	0	50	8	0						
			blastic Asso		lanaa ka Ba	Full	Yield					Dest	1					
		1	North App	roach Cast	lereagh Ro	South App	roach Cast	liereagh Ro	West App	proach Jac	k Williams	Peak						
	444.0		U	R	SB	U	NB 2000	L	U	R	L	total	-					
	AIVI Peak			0%	20%		30%	0%		0%	0%							
Dist	DM Dook			0%	30%		20%	0%		0%	0%							
	PIVI PEdK			0%	20%		50%	0%		0%	0%							
	AM Poak		0	0	0	0	/03	0	0	0/0	0/0	0						
	AM Peak	OUT	0	0	67	0	433	0	0	0	0	0						
Cars	PM Peak	IN	0	0	0	0	64	0	0	0	0	0						
	PM Peak		0	0	435	0	0	0	0	0	0	0						
	AM Peak	IN	0	0	0	0	56	0	0	0	0	0						
	AM Peak	OUT	0	0	25	0	0	0	0	0	0	0						
Trucks	PM Peak	IN	0	0	0	0	24	0	0	0	0	0	1					
	PM Peak	Ουτ	0	0	50	0	0	0	0	0	0	0	1					
			North	Approach	Castlerea	ah Rd	Fa	st Annroac	h Andrews	Rd	South		Castlerea	ah Rd	West (upproach (Nd Castlere	ach Rd
			U	R	SB		U	R	WB		U	R	NB		U	R	FB	
	AM Peak	IN	Ŭ	25%	5%	-	0%	0%	40%	_				_				_
	I Cuk	OUT		2370	0%		070	070	.3/0				5%				40%	25%
Dist	PM Peak	IN		25%	5%		0%	0%	40%				- / 0					
		OUT			0%								5%				40%	25%
	AM Peak	IN	0	410	82	0	0	0	657	0	0	0	0	0	0	0	0	0
	AM Peak	OUT	0	0	0	0	0	0	0	0	0	0	11	0	0	0	90	56
Cars	PM Peak	IN	0	53	11	0	0	0	85	0	0	0	0	0	0	0	0	0
	PM Peak	OUT	0	0	0	0	0	0	0	0	0	0	73	0	0	0	580	363
	AM Peak	IN	0	47	9	0	0	0	75	0	0	0	0	0	0	0	0	0
-	AM Peak	OUT	0	0	0	0	0	0	0	0	0	0	4	0	0	0	33	21
Irucks	PM Peak	IN	0	20	4	0	0	0	32	0	0	0	0	0	0	0	0	0
	PM Peak	OUT	0	0	0	0	0	0	0	0	0	0	8	0	0	0	66	41
							1											

ANNEXURE B: SIDRA OUTPUT REPORTS (24 SHEETS)

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [AM EX (Network Folder: Existing + DEV (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle M	ovem	ent Perforn	nance												
Mov	Turn	Mov	Demand	Flows	Arrival	Flows	Deg.	Aver.	Level of	95% E	Back Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			Cycles	km/h
South: Cas	tlereag	h Road (S)													
1	L2	All MCs	607	11.2	607	11.2	* 0.570	6.4	LOS A	11.0	84.6	0.34	0.60	0.34	51.1
2	T1	All MCs	1044	11.0	1044	11.0	0.570	5.3	LOS A	17.9	137.0	0.40	0.43	0.40	50.0
Approach			1651	11.1	1651	11.1	0.570	5.7	LOS A	17.9	137.0	0.38	0.49	0.38	50.6
North: Cast	tlereag	h Road (N)													
8	T1	All MCs	1719	8.1	<mark>1553</mark>	7.9	0.529	1.8	LOS A	8.5	63.3	0.21	0.19	0.21	56.3
9	R2	All MCs	145	9.6	<mark>139</mark>	9.6	* 1.202	269.6	LOS F	20.5	155.0	1.00	1.67	2.68	10.5
Approach			1863	8.2	<mark>1692</mark>	8.0	1.202	23.9	LOS B	20.5	155.0	0.27	0.31	0.41	33.3
West: Luga	rd Stre	et (W)													
10	L2	All MCs	39	19.4	39	19.4	0.220	59.6	LOS E	2.1	17.5	0.95	0.74	0.95	19.8
12	R2	All MCs	152	24.6	152	24.6	0.888	75.6	LOS F	10.3	86.9	1.00	1.00	1.37	17.1
Approach			191	23.5	191	23.5	0.888	72.3	LOS F	10.3	86.9	0.99	0.95	1.29	17.6
All Vehicles	5		3706	10.3	<mark>3534</mark>	10.8	1.202	18.0	LOS B	20.5	155.0	0.36	0.43	0.44	38.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:03 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [PM EX (Network Folder: Existing + DEV (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Vehicle M	ovem	ent Perforn	nance												
Mov ID	Turn	Mov Class	Demand [Total	Flows HV]	Arrival [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% E [Veh.	Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			Cycles	km/h
South: Cas	tlereag	h Road (S)													
1	L2	All MCs	110	25.8	110	25.8	*0.732	6.1	LOS A	18.4	136.1	0.36	0.38	0.36	51.7
2	T1	All MCs	1861	4.1	1861	4.1	0.732	3.4	LOS A	18.4	136.1	0.34	0.34	0.34	53.0
Approach			1971	5.3	1971	5.3	0.732	3.6	LOS A	18.4	136.1	0.34	0.34	0.34	52.9
North: Cas	tlereag	h Road (N)													
8	T1	All MCs	1445	3.7	<mark>1409</mark>	3.6	* 0.996	75.0	LOS F	70.2	506.2	1.00	1.35	1.45	16.2
9	R2	All MCs	62	12.0	<mark>60</mark>	11.8	0.717	44.4	LOS D	3.6	27.5	0.79	0.91	1.09	31.9
Approach			1507	4.0	<mark>1469</mark>	3.9	0.996	73.7	LOS F	70.2	506.2	0.99	1.33	1.44	16.9
West: Luga	ard Stre	et (W)													
10	L2	All MCs	154	7.5	154	7.5	0.618	58.9	LOS E	8.8	65.3	0.99	0.81	0.99	20.1
12	R2	All MCs	578	10.4	578	10.4	3.102	1958.1	LOS F	171.8	1309.8	1.00	2.99	6.10	0.9
Approach			732	9.8	732	9.8	3.102	1557.9	LOS F	171.8	1309.8	1.00	2.53	5.02	1.2
All Vehicles	6		4210	5.6	<mark>4172</mark>	5.7	3.102	301.1	LOS F	171.8	1309.8	0.68	1.07	1.55	5.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:09 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [AM EX (Network Folder: Existing + DEV (TTPA Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle M	ovem	ent Perforn	nance												
Mov ID	Turn	Mov Class	Demand [Total	Flows HV]	Arrival [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% l [Veh.	Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cvcles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Cas	tlereag	h Road (S)													
1	L2	All MCs	191	12.3	191	12.3	* 0.431	6.2	LOS A	10.0	76.8	0.33	0.43	0.33	51.2
2	T1	All MCs	1044	11.0	1044	11.0	0.431	4.5	LOS A	11.2	86.0	0.34	0.36	0.34	51.1
Approach			1235	11.2	1235	11.2	0.431	4.7	LOS A	11.2	86.0	0.34	0.37	0.34	51.1
North: Cast	tlereag	h Road (N)													
8	T1	All MCs	1719	8.1	1719	8.1	*0.586	1.9	LOS A	10.4	78.0	0.23	0.21	0.23	56.1
9	R2	All MCs	75	8.7	75	8.7	0.348	14.1	LOS A	1.9	14.1	0.43	0.69	0.43	44.4
Approach			1794	8.1	1794	8.1	0.586	2.4	LOS A	10.4	78.0	0.24	0.23	0.24	54.9
West: Luga	rd Stre	et (W)													
10	L2	All MCs	36	18.1	36	18.1	0.201	59.3	LOS E	2.0	15.9	0.95	0.73	0.95	19.8
12	R2	All MCs	130	23.9	130	23.9	0.755	66.7	LOS E	8.0	67.5	1.00	0.89	1.16	18.6
Approach			166	22.7	166	22.7	0.755	65.1	LOS E	8.0	67.5	0.99	0.85	1.11	18.8
All Vehicles	3		3195	10.1	3195	10.1	0.755	6.6	LOS A	11.2	86.0	0.32	0.32	0.32	48.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / IPC | Processed: Friday, 19 May 2023 3:22:14 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [PM EX (Network Folder: Existing + DEV (TTPA Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Vehicle M	lovem	ent Perforr	nance												
Mov ID	Turn	Mov Class	Demand [Total	Flows HV]	Arrival [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% l [Veh.	Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			0,000	km/h
South: Cas	tlereag	h Road (S)													
1	L2	All MCs	94	25.8	94	25.8	* 0.725	6.1	LOS A	17.7	130.8	0.35	0.37	0.35	51.8
2	T1	All MCs	1861	4.1	1861	4.1	0.725	3.3	LOS A	17.7	130.8	0.33	0.33	0.33	53.2
Approach			1955	5.2	1955	5.2	0.725	3.4	LOS A	17.7	130.8	0.33	0.33	0.33	53.1
North: Cas	tlereag	h Road (N)													
8	T1	All MCs	1445	3.7	1445	3.7	* 1.029	94.0	LOS F	77.5	559.5	1.00	1.46	1.59	13.7
9	R2	All MCs	58	10.8	58	10.8	0.684	39.3	LOS C	3.2	24.8	0.76	0.88	1.00	33.4
Approach			1504	4.0	1504	4.0	1.029	91.9	LOS F	77.5	559.5	0.99	1.44	1.56	14.3
West: Luga	ard Stre	et (W)													
10	L2	All MCs	95	5.5	95	5.5	0.375	56.3	LOS D	5.2	37.9	0.95	0.78	0.95	20.2
12	R2	All MCs	227	9.7	227	9.7	1.222	277.0	LOS F	30.0	227.8	1.00	1.58	2.62	6.0
Approach			322	8.5	322	8.5	1.222	211.9	LOS F	30.0	227.8	0.99	1.34	2.13	7.6
All Vehicles	6		3781	5.0	3781	5.0	1.222	56.4	LOS D	77.5	559.5	0.65	0.86	0.97	20.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / IPC | Processed: Friday, 19 May 2023 3:22:20 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols) - Lugard with

LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [AM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle M	ovem	ent Perform	ance												
Mov D	Turn	Mov	Demand	Flows	Arrival	Flows	Deg. Sato	Aver. Delav	Level of Service	95% [\/eb	Back Of Queue	Prop.	Eff. Ston Rate	Aver.	Aver.
		01000	[lotai		[lotai		Call	Delay	0011100	[VOII.	Diot	000		Cycles	opeed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Cast	tlereag	h Road (S)													
1	L2	All MCs	607	11.2	607	11.2	* 0.392	6.2	LOS A	2.9	22.4	0.17	0.62	0.17	51.1
2	T1	All MCs	1044	11.0	1044	11.0	0.362	3.8	LOS A	8.7	66.8	0.32	0.28	0.32	52.4
Approach			1651	11.1	1651	11.1	0.392	4.7	LOS A	8.7	66.8	0.26	0.41	0.26	51.7
North: Cast	lereagl	n Road (N)													
8	T1	All MCs	1719	8.1	<mark>1553</mark>	7.9	0.529	7.5	LOS A	8.5	63.3	0.21	0.19	0.21	56.3
9	R2	All MCs	145	9.6	<mark>139</mark>	9.6	* 1.326	382.6	LOS F	23.7	179.5	1.00	1.84	3.15	8.0
Approach			1863	8.2	<mark>1692</mark>	8.0	1.326	38.4	LOS C	23.7	179.5	0.27	0.33	0.45	28.9
West: Luga	rd Stre	et (W)													
10	L2	All MCs	39	19.4	39	19.4	0.357	66.4	LOS E	2.3	18.9	0.99	0.74	0.99	18.4
12	R2	All MCs	152	24.6	152	24.6	0.888	75.6	LOS F	10.3	86.9	1.00	1.01	1.37	17.2
Approach			191	23.5	191	23.5	0.888	73.7	LOS F	10.3	86.9	1.00	0.95	1.30	17.4
All Vehicles			3706	10.3	<mark>3534</mark>	10.8	1.326	24.6	LOS B	23.7	179.5	0.31	0.40	0.41	35.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:37 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols) - Lugard with

LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [PM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle M	ovem	ent Perforn	nance												
Mov ID	Turn	Mov Class	Demand [Total	Flows HV]	Arrival [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% l [Veh.	Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Cast	tlereag	h Road (S)													
1	L2	All MCs	110	25.8	110	25.8	0.083	8.1	LOS A	1.0	8.6	0.17	0.62	0.17	49.6
2	T1	All MCs	1861	4.1	1861	4.1	0.809	4.0	LOS A	20.1	145.7	0.39	0.36	0.39	52.8
Approach			1971	5.3	1971	5.3	0.809	4.2	LOS A	20.1	145.7	0.38	0.38	0.38	52.4
North: Cast	lereagl	h Road (N)													
8	T1	All MCs	1445	3.7	<mark>1409</mark>	3.6	*0.998	76.2	LOS F	70.5	508.6	1.00	1.35	1.46	16.0
9	R2	All MCs	62	12.0	<mark>60</mark>	11.8	0.380	31.2	LOS C	2.9	22.6	0.83	0.81	0.83	36.3
Approach			1507	4.0	<mark>1468</mark>	3.9	0.998	74.3	LOS F	70.5	508.6	0.99	1.33	1.44	16.8
West: Luga	rd Stre	et (W)													
10	L2	All MCs	154	7.5	154	7.5	0.309	41.5	LOS C	7.1	52.9	0.83	0.78	0.83	24.7
12	R2	All MCs	578	10.4	578	10.4	* 3.141	1992.8	LOS F	172.6	1315.9	1.00	3.14	6.13	0.9
Approach			732	9.8	732	9.8	3.141	1581.6	LOS F	172.6	1315.9	0.96	2.64	5.01	1.2
All Vehicles			4210	5.6	<mark>4172</mark>	5.7	3.141	305.8	LOS F	172.6	1315.9	0.70	1.11	1.56	5.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:45 PM Project: \\mte_nas1\mte_storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols) - Lugard with

LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [AM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (TTPA . Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle M	ovem	ent Perform	ance												
Mov	Turn	Mov	Demand	Flows	Arrival	Flows	Deg.	Aver.	Level of	95%	Back Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of	Speed
			voh/h	0/_	voh/h	0/_	vic	500		yoh	m			Cycles	km/b
South: Cast	tleread	h Road (S)	ven/m	/0	ven/n	/0	V/C	360		Ven					K111/11
				40.0	101	10.0						0.40		0.40	50.0
1	L2	All MCs	191	12.3	191	12.3	0.124	6.1	LOS A	0.7	5.1	0.12	0.61	0.12	50.6
2	T1	All MCs	1044	11.0	1044	11.0	0.362	3.8	LOS A	8.7	66.8	0.32	0.28	0.32	52.4
Approach			1235	11.2	1235	11.2	0.362	4.2	LOS A	8.7	66.8	0.29	0.33	0.29	51.9
North: Cast	lereagl	n Road (N)													
8	T1	All MCs	1719	8.1	1719	8.1	* 0.586	1.9	LOS A	10.4	78.0	0.23	0.21	0.23	56.1
9	R2	All MCs	75	8.7	75	8.7	0.476	14.6	LOS B	2.1	15.7	0.47	0.71	0.47	44.2
Approach			1794	8.1	1794	8.1	0.586	2.5	LOS A	10.4	78.0	0.24	0.23	0.24	54.9
West: Luga	rd Stre	et (W)													
10	L2	All MCs	36	18.1	36	18.1	0.326	66.1	LOS E	2.1	17.2	0.99	0.73	0.99	18.4
12	R2	All MCs	130	23.9	130	23.9	* 0.755	66.7	LOS E	8.0	67.5	1.00	0.89	1.16	18.6
Approach			166	22.7	166	22.7	0.755	66.6	LOS E	8.0	67.5	1.00	0.86	1.12	18.6
All Vehicles	i		3195	10.1	3195	10.1	0.755	6.5	LOS A	10.4	78.0	0.30	0.31	0.30	48.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:50 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols) - Lugard with

LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Network: N101 [PM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (TTPA Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehicle M	ovem	ent Perform	ance												
Mov	Turn	Mov	Demand	Flows	Arrival	Flows	Deg.	Aver.	Level of	95% I	Back Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of	Speed
			veh/h	0/2	veh/h	0/2	vic	202		yeh	m			Cycles	km/h
South: Cast	tlereag	h Road (S)	VCH/H		VCII/II		V/C	300							KIII/II
1	L2	All MCs	94	25.8	94	25.8	0.070	8.1	LOS A	0.9	7.3	0.17	0.61	0.17	49.5
2	T1	All MCs	1861	4.1	1861	4.1	0.807	4.0	LOS A	19.9	144.2	0.39	0.36	0.39	52.8
Approach			1955	5.2	1955	5.2	0.807	4.2	LOS A	19.9	144.2	0.38	0.37	0.38	52.5
North: Cast	lereagl	n Road (N)													
8	T1	All MCs	1445	3.7	1445	3.7	* 1.027	92.8	LOS F	76.7	554.0	1.00	1.46	1.58	13.8
9	R2	All MCs	58	10.8	58	10.8	0.369	30.0	LOS C	2.8	21.4	0.81	0.80	0.81	36.7
Approach			1504	4.0	1504	4.0	1.027	90.4	LOS F	76.7	554.0	0.99	1.43	1.55	14.5
West: Luga	rd Stre	et (W)													
10	L2	All MCs	95	5.5	95	5.5	0.188	39.8	LOS C	4.2	30.8	0.80	0.75	0.80	24.7
12	R2	All MCs	227	9.7	227	9.7	* 1.229	282.3	LOS F	30.3	230.0	1.00	1.64	2.64	5.9
Approach			322	8.5	322	8.5	1.229	210.7	LOS F	30.3	230.0	0.94	1.38	2.10	7.6
All Vehicles			3781	5.0	3781	5.0	1.229	56.0	LOS D	76.7	554.0	0.67	0.88	0.99	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:57 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [AM EX (Network Folder: Existing + DEV (GHD Vols))]

New Site Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Lane Use and	Performa	nce													
	Demano [Total veh/h	d Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	gh Road (S)													
Lane 1	829	11.1	829	11.1	1454	0.570	100	6.3	LOS A	11.0	84.6	Full	425	0.0	0.0
Lane 2	822	11.0	822	11.0	1441	0.570	100	5.0	LOS A	17.9	137.0	Full	425	0.0	0.0
Approach	1651	11.1	1651	11.1		0.570		5.7	LOS A	17.9	137.0				
North: Castlerea	gh Road (N)													
Lane 1	859	8.1	<mark>776</mark>	7.9	1469	0.529	100	1.8	LOS A	8.5	63.3	Full	450	0.0	0.0
Lane 2	859	8.1	<mark>776</mark>	7.9	1469	0.529	100	1.8	LOS A	8.5	63.3	Full	450	0.0	0.0
Lane 3	145	9.6	<mark>139</mark>	9.6	116	1.202	100	269.6	LOS F	20.5	155.0	Short	80	0.0	NA
Approach	1863	8.2	<mark>1692</mark>	8.0		1.202		23.9	LOS B	20.5	155.0				
West: Lugard Str	eet (W)														
Lane 1	39	19.4	39	19.4	177	0.220	100	59.6	LOS E	2.1	17.5	Full	500	0.0	0.0
Lane 2	152	24.6	152	24.6	171	0.888	100	75.6	LOS F	10.3	86.9	Full	500	0.0	0.0
Approach	191	23.5	191	23.5		0.888		72.3	LOS F	10.3	86.9				
All Vehicles	3706	10.3	<mark>3534</mark>	10.8		1.202		18.0	LOS B	20.5	155.0				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Approach Lane	Flows (veh/h	ר)							
South: Castlereagh	h Road (S)								
Mov.	L2	T1	Total	%HV		Deg.	Lane	Prob.	Ov.
From S					Cap.	Satn	Util.	SL Ov.	Lane
To Exit:	W	Ν			veh/h	v/c	%	%	No.
Lane 1	607	222	829	11.1	1454	0.570	100	NA	NA
Lane 2	-	822	822	11.0	1441	0.570	100	NA	NA
Approach	607	1044	1651	11.1		0.570			
North: Castlereagh	NRoad (N)	_		_			_		_
Mov.	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From N					Cap.	Sath	Util.	SL OV.	Lane
TO EXIT:	S	W			ven/n	V/C			NO.
Lane 1	776	-	776	7.9	1469	0.529	100	NA	NA
Lane 2	776	-	776	7.9	1469	0.529	100	NA	NA
Lane 3	-	139	139	9.6	116	1.202	100	<mark>66.3</mark>	2
Approach	1553	139	1692	8.0		1.202			
West: Lugard Stree	et (W)								
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From W					Cap.	Satn	Util.	SL Ov.	Lane
To Exit:	N	S			ven/n	V/C	%	%	No.
Lane 1	39	-	39	19.4	177	0.220	100	NA	NA
Lane 2	-	152	152	24.6	171	0.888	100	NA	NA
Approach	39	152	191	23.5		0 888			
		.02		20.0		0.000			
	Total	%HV	Deg.S	atn (v/c)					
All Vehicles	3534	10.8		1 202					

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis												
	Exit	Short	Percent	Opp	osing	Critical	Follow-up	Lane	Capacity	Deg.	_Min.	Merge
	Lane Number	Lane Length	Opng in Lane	Flow	Rate	Gap	Headway	Flow Rate		Satn	Delay	Delay
		m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lanes for	or Merge Ana	lysis at this S	ite.									

Variable Demand Analys	is			
	Initial Queued Demand	Residual Queued Demand	Time for Residual Demand	Duration of Oversatn
	veh	veh	sec	sec
South: Castlereagh Road (S)			
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)			

Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	11.7	363.0	NA
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:03 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [PM EX (Network Folder: Existing + DEV (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Lane Use and	Performa	nce													
	Demano [Total veh/h	d Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	igh Road (S)													
Lane 1	975	6.6	975	6.6	1333	0.732	100	4.4	LOS A	18.4	136.1	Full	425	0.0	0.0
Lane 2	996	4.1	996	4.1	1361	0.732	100	2.8	LOS A	16.7	121.3	Full	425	0.0	0.0
Approach	1971	5.3	1971	5.3		0.732		3.6	LOS A	18.4	136.1				
North: Castlerea	gh Road (N)													
Lane 1	820	3.7	<mark>799</mark>	3.6	803	0.996	100	71.5	LOS F	70.2	506.2	Full	450	<mark>-41.2</mark> ^{N3}	<mark>15.7</mark>
Lane 2	625	3.7	<mark>610</mark>	3.6	612 ¹	0.996	100	79.6	LOS F	56.1	405.0	Full	450	<mark>-41.2</mark> ^{N3}	0.0
Lane 3	62	12.0	<mark>60</mark>	11.8	83	0.717	100	44.4	LOS D	3.6	27.5	Short	80	0.0	NA
Approach	1507	4.0	<mark>1469</mark>	3.9		0.996		73.7	LOS F	70.2	506.2				
West: Lugard St	reet (W)														
Lane 1	154	7.5	154	7.5	250	0.618	100	58.9	LOS E	8.8	65.3	Full	500	0.0	0.0
Lane 2	578	10.4	578	10.4	186	3.102	100	1958.1	LOS F	171.8	1309.8	Full	500	<mark>-41.2</mark> ^{N3}	<mark>95.9</mark>
Approach	732	9.8	732	9.8		3.102		1557.9	LOS F	171.8	1309.8				
All Vehicles	4210	5.6	<mark>4172</mark>	5.7		3.102		301.1	LOS F	171.8	1309.8				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes.

Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

N3 Capacity Adjustment due to downstream lane blockage determined by the program.

Approach Lane	Flows (veh/h)							
South: Castlereagh	n Road (S)								
Mov. From S To Exit:	L2 W	T1 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.
Lane 1	110	865	975	6.6	1333	0.732	100	NA	NA
Lane 2	-	996	996	4.1	1361	0.732	100	NA	NA
Approach	110	1861	1971	5.3		0.732			
North: Castlereagh	Road (N)								
Mov.	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From N					Cap.	Satn	Util.	SL Ov.	Lane
To Exit:	S	W			veh/h	V/C	%	%	No.
Lane 1	799	-	799	3.6	803	0.996	100	NA	NA
Lane 2	610	-	610	3.6	612 ¹	0.996	100	NA	NA
Lane 3	-	60	60	11.8	83	0.717	100	0.0	2
Approach	1409	60	1469	3.9		0.996			
West: Lugard Stree	et (W)								
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From W					Cap.	Satn	Util.	SL Ov.	Lane
To Exit:	N	S			ven/n	V/C	%	%	No.
Lane 1	154	-	154	7.5	250	0.618	100	NA	NA
Lane 2	-	578	578	10.4	186	3.102	100	NA	NA
Approach	154	578	732	9.8		3.102			
	Total	%HV	Deg.S	atn (v/c)					

All Vehicles 4172 5.7 3.102

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes. Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

Merge Analysis												
	Exit Lane Number	Short Lane Length	Percent Opng in Lane	Opp Flow	osing Rate	Critical Gap	Follow-up Headway	Lane Flow Rate	Capacity	Deg. Satn	Min. Delay	Merge Delay
		m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lar	es for Merge Ana	alysis at this S	ite.									

Variable Demand Analysis												
Initial	Residual	Time for	Duration									
Queued	Queued	Residual	of									
Demand	Demand	Demand	Oversatn									
		to Clear										
veh	veh	sec	sec									

South: Castlereagh Road (S)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	195.8	3784.4	NA

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:09 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [AM EX (Network Folder: Existing + DEV (TTPA Vols))]

New Site Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Lane Use and Performance															
	Demano [Total veh/h	d Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	agh Road (S	5)													
Lane 1	614	11.4	614	11.4	1425	0.431	100	5.3	LOS A	10.0	76.8	Full	425	0.0	0.0
Lane 2	621	11.0	621	11.0	1441	0.431	100	4.2	LOS A	11.2	86.0	Full	425	0.0	0.0
Approach	1235	11.2	1235	11.2		0.431		4.7	LOS A	11.2	86.0				
North: Castlerea	gh Road (N)													
Lane 1	859	8.1	859	8.1	1467	0.586	100	1.9	LOS A	10.4	78.0	Full	450	0.0	0.0
Lane 2	859	8.1	859	8.1	1467	0.586	100	1.9	LOS A	10.4	78.0	Full	450	0.0	0.0
Lane 3	75	8.7	75	8.7	216	0.348	100	14.1	LOS A	1.9	14.1	Short	80	0.0	NA
Approach	1794	8.1	1794	8.1		0.586		2.4	LOS A	10.4	78.0				
West: Lugard St	reet (W)														
Lane 1	36	18.1	36	18.1	178	0.201	100	59.3	LOS E	2.0	15.9	Full	500	0.0	0.0
Lane 2	130	23.9	130	23.9	172	0.755	100	66.7	LOS E	8.0	67.5	Full	500	0.0	0.0
Approach	166	22.7	166	22.7		0.755		65.1	LOS E	8.0	67.5				
All Vehicles	3195	10.1	3195	10.1		0.755		6.6	LOS A	11.2	86.0				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Approach Lane	Flows (veh/h	ר)							
South: Castlereage	h Road (S)								
Mov.	L2	T1	Total	%HV		Deg.	Lane	Prob.	Ov.
From S					Cap.	Satn	Util.	SL Ov.	Lane
To Exit:	W	Ν			veh/h	v/c	%	%	No.
Lane 1	191	423	614	11.4	1425	0.431	100	NA	NA
Lane 2	-	621	621	11.0	1441	0.431	100	NA	NA
Approach	191	1044	1235	11.2		0.431			
	5								
North: Castlereagh	n Road (N)						_		_
Mov.	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From N					Cap.	Satn	Util.	SL OV.	Lane
lo Exit:	Ś	W			ven/n	V/C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	%	NO.
Lane 1	859	-	859	8.1	1467	0.586	100	NA	NA
Lane 2	859	-	859	8.1	1467	0.586	100	NA	NA
Lane 3	-	75	75	8.7	216	0.348	100	0.0	2
Approach	1719	75	1794	8.1		0.586			
West: Lugard Stree	et (W)								
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.
From W					Cap.	Satn	Util.	SL Ov.	Lane
To Exit:	N	S			veh/h	v/c	%	%	No.
Lane 1	36	-	36	18.1	178	0.201	100	NA	NA
Lane 2	-	130	130	23.9	172	0.755	100	NA	NA
Annroach	36	130	166	22.7		0 755			
						0.700			
	Total	%HV	Deg.S	Satn (v/c)					
All Vehicles	3195	10.1		0 755					

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis												
	Exit	Short	Percent	Opp	osing	Critical	Follow-up	Lane	Capacity	Deg.	_Min.	Merge
	Lane Number	Lane Length	Opng in Lane	Flow	Rate	Gap	Headway	Flow Rate		Satn	Delay	Delay
		m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lanes for	or Merge Ana	lysis at this S	ite.									

Variable Demand Analys	is			
	Initial Queued Demand	Residual Queued Demand	Time for Residual Demand	Duration of Oversatn
	veh	veh	sec	sec
South: Castlereagh Road (S)			
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)			

Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:14 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols))]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■ Network: N101 [PM EX (Network Folder: Existing + DEV (TTPA Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Lane Use and Performance															
	Demano [Total veh/h	t Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	gh Road (S)													
Lane 1	969	6.2	969	6.2	1337	0.725	100	4.2	LOS A	17.7	130.8	Full	425	0.0	0.0
Lane 2	986	4.1	986	4.1	1361	0.725	100	2.7	LOS A	16.3	118.0	Full	425	0.0	0.0
Approach	1955	5.2	1955	5.2		0.725		3.4	LOS A	17.7	130.8				
North: Castlerea	gh Road (N))													
Lane 1	819	3.7	819	3.7	796	1.029	100	90.9	LOS F	77.5	559.5	Full	450	<mark>-41.7</mark> ^{N3}	<mark>24.8</mark>
Lane 2	626	3.7	626	3.7	609 ¹	1.029	100	98.0	LOS F	61.3	442.5	Full	450	<mark>-41.7</mark> ^{N3}	<mark>3.5</mark>
Lane 3	58	10.8	58	10.8	85	0.684	100	39.3	LOS C	3.2	24.8	Short	80	0.0	NA
Approach	1504	4.0	1504	4.0		1.029		91.9	LOS F	77.5	559.5				
West: Lugard Str	eet (W)														
Lane 1	95	5.5	95	5.5	253	0.375	100	56.3	LOS D	5.2	37.9	Full	500	0.0	0.0
Lane 2	227	9.7	227	9.7	186	1.222	100	277.0	LOS F	30.0	227.8	Full	500	<mark>-41.7</mark> ^{N3}	0.0
Approach	322	8.5	322	8.5		1.222		211.9	LOS F	30.0	227.8				
All Vehicles	3781	5.0	3781	5.0		1.222		56.4	LOS D	77.5	559.5				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes.

Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

N3 Capacity Adjustment due to downstream lane blockage determined by the program.

Approach Lane	lows (veh/h	ı)								
South: Castlereagh	Road (S)									
Mov. From S To Exit:	L2 W	T1 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	94	875	969	6.2	1337	0.725	100	NA	NA	
Lane 2	-	986	986	4.1	1361	0.725	100	NA	NA	
Approach	94	1861	1955	5.2		0.725				
North: Castlereagh	Road (N)									
Mov. From N	T1	R2	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No	
	5	VV								
Lane 1	819	-	819	3.7	796	1.029	100	NA	NA	
Lane 2	626	-	626	3.7	609	1.029	100	NA	NA	
Lane 3	-	58	58	10.8	85	0.684	100	0.0	2	
Approach	1445	58	1504	4.0		1.029				
West: Lugard Stree	et (W)									
Mov. From W	L2	R2	Total	%HV	Cap.	Deg. Satn	Lane Util.	Prob. SL Ov.	Ov. Lane	
To Exit:	N	S			véh/h	v/c	%	%	No.	
Lane 1	95	-	95	5.5	253	0.375	100	NA	NA	
Lane 2	-	227	227	9.7	186	1.222	100	NA	NA	
Approach	95	227	322	8.5		1.222				
	Total	%HV	Deg.S	Satn (v/c)						

All Vehicles 3781 5.0 1.222

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes. Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

Merge Analysis												
	Exit Lane Number	Short Lane Length	Percent Opng in Lane	Oppo Flow	osing Rate	Critical Gap	Follow-up Headway	Lane Flow Rate	Capacity	Deg. Satn	Min. Delay	Merge Delay
		m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lan	es for Merge Ana	lysis at this S	ite.									

Variable Demand Analysis												
Initial	Residual	Time for	Duration									
Queued	Queued	Residual	of									
Demand	Demand	Demand	Oversatn									
		to Clear										
veh	veh	sec	sec									

South: Castlereagh Road (S)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)				
Lane 1	0.0	11.3	51.3	NA
Lane 2	0.0	8.7	51.3	NA
Lane 3	0.0	0.0	0.0	0.0
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	20.7	400.5	NA

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:20 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols) - Lugard with LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Network: N101 [AM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Lane Use and I	Performar	nce													
	Demano [Total veh/h	l Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	gh Road (S)													
Lane 1	607	11.2	607	11.2	1548	0.392	100	6.2	LOS A	2.9	22.4	Short	60	0.0	NA
Lane 2	522	11.0	522	11.0	1441	0.362	100	3.8	LOS A	8.7	66.8	Full	425	0.0	0.0
Lane 3	522	11.0	522	11.0	1441	0.362	100	3.8	LOS A	8.7	66.8	Full	425	0.0	0.0
Approach	1651	11.1	1651	11.1		0.392		4.7	LOS A	8.7	66.8				
North: Castlereag	h Road (N)													
Lane 1	859	8.1	<mark>776</mark>	7.9	1469	0.529	100	1.8	LOS A	8.5	63.3	Full	450	0.0	0.0
Lane 2	859	8.1	<mark>776</mark>	7.9	1469	0.529	100	13.2	LOS A	8.5	63.3	Full	450	0.0	0.0
Lane 3	145	9.6	<mark>139</mark>	9.6	105	1.326	100	382.6	LOS F	23.7	179.5	Short	80	0.0	NA
Approach	1863	8.2	<mark>1692</mark>	8.0		1.326		38.4	LOS C	23.7	179.5				
West: Lugard Stre	eet (W)														
Lane 1	39	19.4	39	19.4	109	0.357	100	66.4	LOS E	2.3	18.9	Full	500	0.0	0.0
Lane 2	152	24.6	152	24.6	171	0.888	100	75.6	LOS F	10.3	86.9	Full	500	0.0	0.0
Approach	191	23.5	191	23.5		0.888		73.7	LOS F	10.3	86.9				
All Vehicles	3706	10.3	<mark>3534</mark>	10.8		1.326		24.6	LOS B	23.7	179.5				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

										_
Approach Lane	Flows (veh/h)								
South: Castlereagh	n Road (S)									
Mov. From S To Exit:	L2 W	T1 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	607	-	607	11.2	1548	0.392	100	0.0	2	
Lane 2	-	522	522	11.0	1441	0.362	100	NA	NA	
Lane 3	-	522	522	11.0	1441	0.362	100	NA	NA	
Approach	607	1044	1651	11.1		0.392				
North: Castlereagh	n Road (N)									
Mov. From N	T1	R2	Total	%HV	Cap.	Deg. Satn	Lane Util <u>.</u>	Prob. SL Ov <u>.</u>	Ov. Lane	
To Exit:	S	W			veh/h	v/c	%	%	No.	
Lane 1	776	-	776	7.9	1469	0.529	100	NA	NA	
Lane 2	776	-	776	7.9	1469	0.529	100	NA	NA	
Lane 3	-	139	139	9.6	105	1.326	100	<mark>80.5</mark>	2	
Approach	1553	139	1692	8.0		1.326				
West: Lugard Stree	et (W)									
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From W					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	N	S			ven/n	V/C	%	%	NO.	
Lane 1	39	-	39	19.4	109	0.357	100	NA	NA	
Lane 2	-	152	152	24.6	171	0.888	100	NA	NA	
Approach	39	152	191	23.5		0.888				
	Total	%H\/	Deg S	Satn (y/c)						

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis										
Ex Lan Numbe	it Short e Lane r Length	Percent Opng in Lane	Opposing Flow Rate	Critical Gap	Follow-up Headway	Lane Flow Rate	Capacity	Deg. Satn	Min. Delay	Merge Delay
	m	%	veh/h pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lanes for Merge	Analysis at this	Site.								

Variable Demand Analysis			
Initial	Residual	Time for	Duration
Queued	Queued	Residual	of
Demand	Demand	Demand to Clear	Oversatn
veh	veh	sec	sec
South: Castlereagh Road (S)			

Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	17.2	587.2	NA
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:37 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (GHD Vols) - Lugard with LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Network: N101 [PM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (GHD Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Lane Use and I	Performa	nce													
	Demano [Total veh/h	d Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	gh Road (S	;)													
Lane 1	110	25.8	110	25.8	1333	0.083	100	8.1	LOS A	1.0	8.6	Short	60	0.0	NA
Lane 2	913	4.1	913	4.1	1129 ¹	0.809	100	4.3	LOS A	18.3	132.6	Full	425	0.0	0.0
Lane 3	948	4.1	948	4.1	1171	0.809	100	3.6	LOS A	20.1	145.7	Full	425	0.0	0.0
Approach	1971	5.3	1971	5.3		0.809		4.2	LOS A	20.1	145.7				
North: Castlereag	h Road (N)													
Lane 1	812	3.7	<mark>791</mark>	3.6	793	0.998	100	73.5	LOS F	70.5	508.6	Full	450	<mark>-42.0</mark> ^{N3}	<mark>16.1</mark>
Lane 2	633	3.7	<mark>617</mark>	3.6	618 ¹	0.998	100	79.6	LOS F	56.1	404.9	Full	450	<mark>-42.0</mark> ^{N3}	0.0
Lane 3	62	12.0	<mark>60</mark>	11.8	157	0.380	100	31.2	LOS C	2.9	22.6	Short	80	0.0	NA
Approach	1507	4.0	<mark>1468</mark>	3.9		0.998		74.3	LOS F	70.5	508.6				
West: Lugard Stre	eet (W)														
Lane 1	154	7.5	154	7.5	500	0.309	100	41.5	LOS C	7.1	52.9	Full	500	0.0	0.0
Lane 2	578	10.4	578	10.4	184	3.141	100	1992.8	LOS F	172.6	1315.9	Full	500	<mark>-42.0</mark> ^{N3}	<mark>96.3</mark>
Approach	732	9.8	732	9.8		3.141		1581.6	LOS F	172.6	1315.9				
All Vehicles	4210	5.6	<mark>4172</mark>	5.7		3.141		305.8	LOS F	172.6	1315.9				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes.

Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

N3 Capacity Adjustment due to downstream lane blockage determined by the program.

Approach Lane	Flows (veh/h)								
South: Castlereagh	n Road (S)									
Mov.	L2	T1	Total	%HV		Deg.	Lane	Prob.	Ov.	
From S					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	W	N			veh/h	v/c	%	%	No.	
Lane 1	110	-	110	25.8	1333	0.083	100	0.0	2	
Lane 2	-	913	913	4.1	1129 ¹	0.809	100	NA	NA	
Lane 3	-	948	948	4.1	1171	0.809	100	NA	NA	
Approach	110	1861	1971	5.3		0.809				
North: Castlereagh	Road (N)									
Mov.	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From N					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	S	W			veh/h	v/c	%	%	No.	
Lane 1	791	-	791	3.6	793	0.998	100	NA	NA	
Lane 2	617	-	617	3.6	618 ¹	0.998	100	NA	NA	
Lane 3	-	60	60	11.8	157	0.380	100	0.0	2	
Approach	1409	60	1468	3.9		0.998				
West: Lugard Stree	et (W)									
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From W					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	N	S			veh/h	v/c	%	%	No.	
Lane 1	154	-	154	7.5	500	0.309	100	NA	NA	
Lane 2	-	578	578	10.4	184	3.141	100	NA	NA	
Approach	154	578	732	9.8		3.141				

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes. Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

Merge Analysis												
	Exit	Short	Percent	Opp	osing	Critical	Follow-up	Lane	Capacity	Deg.	Min.	Merge
	Lane	Lane	Opng in	Flow	Rate	Gap	Headway	Flow		Satn	Delay	Delay
	Number	Length	Lane					Rate				
		m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lan	es for Merge Ana	alysis at this S	ite.									

Variable Demand Analysis				
	Initial	Residual	Time for	Duration

	Queued	Queued	Residual	of
	Demand	Demand	Demand to Clear	Oversatn
	veh	veh	sec	sec
South: Castlereagh Road (S)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	197.0	3853.6	NA

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:45 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [AM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols) - Lugard with LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Network: N101 [AM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (TTPA Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Lane Use and I	Lane Use and Performance														
	Demano [Total veh/h	l Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back [Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlerea	gh Road (S)													
Lane 1	191	12.3	191	12.3	1536	0.124	100	6.1	LOS A	0.7	5.1	Short	60	0.0	NA
Lane 2	522	11.0	522	11.0	1441	0.362	100	3.8	LOS A	8.7	66.8	Full	425	0.0	0.0
Lane 3	522	11.0	522	11.0	1441	0.362	100	3.8	LOS A	8.7	66.8	Full	425	0.0	0.0
Approach	1235	11.2	1235	11.2		0.362		4.2	LOS A	8.7	66.8				
North: Castlereag	h Road (N))													
Lane 1	859	8.1	859	8.1	1467	0.586	100	1.9	LOS A	10.4	78.0	Full	450	0.0	0.0
Lane 2	859	8.1	859	8.1	1467	0.586	100	1.9	LOS A	10.4	78.0	Full	450	0.0	0.0
Lane 3	75	8.7	75	8.7	158	0.476	100	14.6	LOS B	2.1	15.7	Short	80	0.0	NA
Approach	1794	8.1	1794	8.1		0.586		2.5	LOS A	10.4	78.0				
West: Lugard Stre	eet (W)														
Lane 1	36	18.1	36	18.1	110	0.326	100	66.1	LOS E	2.1	17.2	Full	500	0.0	0.0
Lane 2	130	23.9	130	23.9	172	0.755	100	66.7	LOS E	8.0	67.5	Full	500	0.0	0.0
Approach	166	22.7	166	22.7		0.755		66.6	LOS E	8.0	67.5				
All Vehicles	3195	10.1	3195	10.1		0.755		6.5	LOS A	10.4	78.0				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Approach Lane	Flows (veh/h	ı)								
South: Castlereag	gh Road (S)									
Mov. From S To Exit:	L2 W	T1 N	Total	%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Prob. SL Ov. %	Ov. Lane No.	
Lane 1	191	-	191	12.3	1536	0.124	100	0.0	2	
Lane 2	-	522	522	11.0	1441	0.362	100	NA	NA	
Lane 3	-	522	522	11.0	1441	0.362	100	NA	NA	
Approach	191	1044	1235	11.2		0.362				
North: Castlereag	h Road (N)									
Mov.	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From N					Cap. veh/h	Satn	Util. %	SL Ov. %	Lane No	
IO EXIL:	S	W			VCII/II	v/C	70	70	NO.	
Lane 1	859	-	859	8.1	1467	0.586	100	NA	NA	
Lane 2	859	-	859	8.1	1467	0.586	100	NA	NA	
Lane 3	-	75	75	8.7	158	0.476	100	0.0	2	
Approach	1719	75	1794	8.1		0.586				
West: Lugard Stre	eet (W)									
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From W					Cap.	Sath	Util.	SL Ov.	Lane	
TO EXIT:	Ň	S					70	70	NO.	
Lane 1	36	-	36	18.1	110	0.326	100	NA	NA	
Lane 2	-	130	130	23.9	172	0.755	100	NA	NA	
Approach	36	130	166	22.7		0.755				
	Total	%ㅂ\/	Dea	Sath (y/c)						

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Merge Analysis											
E: Lar Numb	kit Short le Lane er Length	Percent Opng in Lane	Opp Flow	osing Rate	Critical Gap	Follow-up Headway	Lane Flow Rate	Capacity	Deg. Satn	Min. Delay	Merge Delay
	m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lanes for Merg	e Analysis at this	s Site.									

Variable Demand Analysis			
Initial	Residual	Time for	Duration
Queued	Queued	Residual	of
Demand	Demand	Demand to Clear	Oversatn
veh	veh	sec	sec
South: Castlereagh Road (S)			

Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:50 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9

Site: 101 [PM EX - Lugard / Castlereagh (Site Folder: Existing + DEV (TTPA Vols) - Lugard with LT Lane)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Network: N101 [PM EX w LT (Network Folder: Existing + DEV - Lugard with LT Lane (TTPA Vols))]

New Site

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Lane Use and F	Performar	nce													
	Demano [Total veh/h	t Flows HV] %	Arrival [Total veh/h	Flows HV] %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Aver. Delay sec	Level of Service	95% Back ([Veh	Of Queue Dist] m	Lane Config	Lane Length m	Cap. Adj. %	Prob. Block. %
South: Castlereag	h Road (S)													
Lane 1	94	25.8	94	25.8	1334	0.070	100	8.1	LOS A	0.9	7.3	Short	60	0.0	NA
Lane 2	916	4.1	916	4.1	1135 ¹	0.807	100	4.3	LOS A	18.4	133.2	Full	425	0.0	0.0
Lane 3	945	4.1	945	4.1	1171	0.807	100	3.6	LOS A	19.9	144.2	Full	425	0.0	0.0
Approach	1955	5.2	1955	5.2		0.807		4.2	LOS A	19.9	144.2				
North: Castlereag	h Road (N))													
Lane 1	813	3.7	813	3.7	792	1.027	100	89.9	LOS F	76.7	554.0	Full	450	<mark>-41.9</mark> ^{N3}	<mark>23.9</mark>
Lane 2	632	3.7	632	3.7	615 ¹	1.027	100	96.6	LOS F	61.5	444.4	Full	450	<mark>-41.9</mark> ^{N3}	<mark>3.9</mark>
Lane 3	58	10.8	58	10.8	159	0.369	100	30.0	LOS C	2.8	21.4	Short	80	0.0	NA
Approach	1504	4.0	1504	4.0		1.027		90.4	LOS F	76.7	554.0				
West: Lugard Stre	eet (W)														
Lane 1	95	5.5	95	5.5	506	0.188	100	39.8	LOS C	4.2	30.8	Full	500	0.0	0.0
Lane 2	227	9.7	227	9.7	185	1.229	100	282.3	LOS F	30.3	230.0	Full	500	<mark>-41.9</mark> ^{N3}	0.0
Approach	322	8.5	322	8.5		1.229		210.7	LOS F	30.3	230.0				
All Vehicles	3781	5.0	3781	5.0		1.229		56.0	LOS D	76.7	554.0				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes.

Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

N3 Capacity Adjustment due to downstream lane blockage determined by the program.

Approach Lane I	Flows (veh/h	ו)								
South: Castlereagh	Road (S)									
Mov.	L2	T1	Total	%HV		Deg.	Lane	Prob.	Ov.	
From S					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	W	Ν			ven/n	V/C	%	%	No.	
Lane 1	94	-	94	25.8	1334	0.070	100	0.0	2	
Lane 2	-	916	916	4.1	1135 ¹	0.807	100	NA	NA	
Lane 3	-	945	945	4.1	1171	0.807	100	NA	NA	
Approach	94	1861	1955	5.2		0.807				
North: Castlereagh	Road (N)									
Mov.	T1	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From N					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	S	W			veh/h	v/c	%	%	No.	
Lane 1	813	-	813	3.7	792	1.027	100	NA	NA	
Lane 2	632	-	632	3.7	615 ¹	1.027	100	NA	NA	
Lane 3	-	58	58	10.8	159	0.369	100	0.0	2	
Approach	1445	58	1504	4.0		1.027				
West: Lugard Stree	et (W)									
Mov.	L2	R2	Total	%HV		Deg.	Lane	Prob.	Ov.	
From W					Cap.	Satn	Util.	SL Ov.	Lane	
To Exit:	N	S			vēh/h	v/c	%	%	No.	
Lane 1	95	-	95	5.5	506	0.188	100	NA	NA	
Lane 2	-	227	227	9.7	185	1.229	100	NA	NA	
Approach	95	227	322	8.5		1.229				

	Total %HV	Deg.Satn (v/c)
All Vehicles	3781 5.0	1.229

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

1 Reduced capacity due to a short lane effect. Short lane queues may extend into the full-length lanes. Delay and stops experienced by drivers upstream of short lane entry have been accounted for.

Merge Analysis												
	Exit	Short	Percent	Opp	osing	Critical	Follow-up	Lane	Capacity	Deg.	Min.	Merge
	Lane	Lane	Opng in	Flow	Rate	Gap	Headway	Flow		Satn	Delay	Delay
	Number	Length	Lane					Rate				
		m	%	veh/h	pcu/h	sec	sec	veh/h	veh/h	v/c	sec	sec
There are no Exit Short Lan	es for Merge Ana	alysis at this S	ite.									

Variable Demand Analysis				
	Initial	Residual	Time for	Duration

	Queued Demand	Queued Demand	Residual Demand	of Oversatn
	Bolliana	Bomana	to Clear	Overeau
	veh	veh	sec	sec
South: Castlereagh Road (S)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	0.0	0.0	0.0
Lane 3	0.0	0.0	0.0	0.0
North: Castlereagh Road (N)				
Lane 1	0.0	10.5	47.8	NA
Lane 2	0.0	8.2	47.8	NA
Lane 3	0.0	0.0	0.0	0.0
West: Lugard Street (W)				
Lane 1	0.0	0.0	0.0	0.0
Lane 2	0.0	21.1	411.4	NA

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MCLAREN TRAFFIC ENGINEERING | Licence: NETWORK / 1PC | Processed: Friday, 19 May 2023 3:22:57 PM Project: \\mte_nas1\mte storage\Jobs\2022\220509\MTE SIDRA\23 05 16 - Based on new counts\MTE SIDRA.sip9